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13C nmr spectral data of the parent substance pyrido[2,3-b]pyrazine and several of its
derivatives (containing one or more chloro, amino, oxo, bromo, fluoro, phenyl, methyl, hydrazino
or t-butyl substituents) are reported. The 13C nmr spectrum of the parent substance has been
assigned conclusively by '?C-labelling. Additionally we proved, the existence of anionic 1:1
o-adducts i.e., 3-amino-3 4-dihydropyrido|2,3-b Jpyrazine, the formation of 3-amino-2-t-butyl-6-
chloro-3,4-dihy dropyrido|[ 2,3-b |pyrazinide ion and by 'H nmr spectroscopy 2-amino-1,2-
dihydro-3-phenylpyrido[2,3-b |pyrazinide jon. The ' *C nmr data of the cation of the dihydrate
2,3-dihydroxy-1,2,3 4-letrahydropyrido| 2,3-b [pyrazine, present in a solution of the parent

compound in ¥ hydrochloric acid, are given.

J. Heterocyclic Chem., 16, 301 (1979).

Introduction.

Recently the '*C nmr spectra of pteridines and their
covalent o-adducts with ammonia and water have been
analyzed (2,3). In our study on the course of the ring
contraction of pyrido[2,3-b |pyrazines (3-deazapteridines)
into 1H-imidazo[4,5-b |pyridines we suggested as initial
step the formation of a g-adduct between the pyrido[2,3-
b]pyrazine and amide ion (3). With the aim to obtain
more detailed information about the formation and
structure of these 0-adducts we measured the '*C nmr
spectra of solutions of pyrido|2,3-b |pyrazine and a
number of its derivatives in deuteriochloroform and
compared these data with those of solutions of the
compounds in liquid ammonia, containing potassium

amide.
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Results and Discussion.

The proton coupled '*C nmr spectrum of pyrido[2,3-
b Jpyrazine (1a) - dissolved in deuteriochloroform - shows
five intense signals found at 125.7, 138.8, 146.3, 148.0
and 154.5 ppm (Table 1), associated with one bond
13(-1 H coupling constants (* JC-H) of 168, 169, 185, 185
and 181 Hz, respectively. The most downfield signal in the
spectrum, at 154.5 ppm, is found to be associated with
two long-range ' *C-'H coupling constants of 8.6 and 3.5
Hz. Long-range coupling constants arc found for the
resonances at 125.6 ppm (9.2 Hz) and 138.8 ppm (6.4 [1z).
The chemical shifts and the one bond coupling constants
are in excellent agreement with those established for

quinoline (C-2: 150.2 ppm, VJC-H = 178 Hz, 2JCy-Hy =
0022-152X/79/020301-04$02.25

3.7 Hz, ®JCy-Ha = 7.9 Hz; C-3: 1209 ppm, 'JC-I =
165 Hz, 2JC3-H, = 9.6 Hz; C-4: 135.7 ppm, 'JC-H =
162 Hz, ®JCs-H, = 5.4 Hz). Based on these data we
assigned the signals in the 13C nmr spectrum of 1a at
154.5, 125.6 and 138.8 ppm to C-6, C-7 and C-8 respecti-
vely. The two remaining signals at 146.3 (*JC-H = 185
Hz) and 148.0 ppm (IJ(J-H = 185 Hz) are ascribed Lo (-2
and C-3 respectively. That this assignment is not reversed
is substantiated on the increase of the signal at 146.3 ppm,
when the 13C nmr spectrum of |'>C-2 |pyrido|2,3-b |pyr-
azine (1a*) is measured (4). Two smaller signals at 138.6
ppm and 151.6 ppm were assigned to C-9 and C-10
respectively. These assignments were based on the values
established for similar systems such as quinoxaline and
quinazoline (5).

From the !'3C nmr spectral data presented in Table |
some substituent effects deserve comment. Striking long-
range effects are caused by amino and oxo groups. Thus
the 6-amino group in 1e causes C-2 to have an upfield
shift of 6.5 ppm, while C-3 is almost unaffected. A
similar effect is exerted by the 2-oxo group in 1f, that
gives rise to an upfield shift of 9.4 ppm for C-6, leaving
C7 unaffected. Apparently the electrondonating capability
of the amino or oxo group enhances the electron density
in those positions. When compared with 1a, C-8 in O-
chloropyrido|2,3-b |pyrazine (1d) - meta-oriented to the
chloro atom - is shifted more downfield (2.3 ppm) than
C-6 (0.2 ppm). This is also observed with C-4 in 2-chloro-
pteridine (2) and is apparently a general phenomenon. It
reflects the somewhat enhanced reactivity of the position
meta-oriented to the chloro atom in 2-chloroquinoline (6),
2,6-dichloropyridine (7) and 2-chloropteridine (8) towards
nucleophiles, such as the amide ion.

As was reporled for pteridine derivatives (2), the
a-substituent effect of a t-butyl group was found to be
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approximately - 20 ppm, the S-substituent effect about
+2 ppm.

Because of the very slight difference between the
chemical shifts (0.1 ppm) in the pmr spectra of pyrido| 2,3-
b Jpyrazines il is not possible Lo assign unequivocally
whether a compound is a 2- or 3-subslituted derivative.
However, it is now certain that '>C nmr substituent
effects should provide a more sound base than pmr data,
in establishing such structures as Tk and 11.

Covalent o-Adducts.
Covalent Aminination.

Close resemblance was found for the pmr spectrum of
pyrido| 2,3-b |pyrazine (1a), dissolved in deuteriochloro-
form and in liquid ammonia. This indicates that 1a, in
conlrasl to pteridine (8), is not able to give a o-adduct
with ammonia, not even at elevated temperature. However,
the '°C nmr spectrum of a solution of 1a in liquid
ammonia, containing 2 equivalents of potassium amide,
completely differs from that of 1a, dissolved in deuterio-
chioroform (Table 2). An enormous upfield shift of
83.7 ppm is observed for C-3, while ' JC-H decreases to
150 Hz. This is ascribed to rehybridization of C-3, due to
formation of the 3-amino-3,4-dihydropyrido|2,3-b Jpy-
razinide ion. Similar magnitudes of upfield shifts have
been observed before, on adduct formation of pyrimidines
(9) with the amide ion.

Consistent with o-adduct formation at C-3 is the
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relatively large upfield shift of C-7, reflecting the en-

hancement of negative charge in the pyridine nucleus,
caused by the contribution of the resonance structure 2a.
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Similar upfield shifts for C-3 and C-7 are found for a
solution of 2-t-butyl-6-chloropyrido[2,3-b |pyrazine (11)
in liquid ammonia, containing 2 equivalents of potassium
amide, indicating the formation of the stable ¢-adduct 3.
Recently 3+-butyl-6-chloropyrido|2,3-b |pyrazine (1k) was
found to be converted into 2-t-butyl-1l{-imidazo|4,5-b]-
This
ring contraction was explained by an initial addition of
the amide ion to C-2, followed by a rearrangement with
expulsion of C-2. Attempts to obtain spectroscopic
evidence for the existence of a covalent g-adduct between
1k and amide ion failed, due to the fast occurring ring
contraction. When measuring the pmr spectrum of 3-¢-

pyridine by potassium amide in liquid ammonia.

Table I
C-2 C-3 C9 Cc-10 C-o6 C7 C-8
Pyrido[ 2,3-b ] pyrazine 1a 146.3 148.0 138.6 151.6 154.5 125.7 138.8
13¢-2-Pyrido[2,3-b | pyrazine 1la* 146.3% 148.0 138.6 151.6 154.5 125.7 138.8
3-Phenyl- 1b 144.3 154.5 135.8 150.8 154.5 124.7 138.1
3-1-Butyl- 1c 144.8 167.6 135.9 150.4 153.9 124.6 138.2
6-Chloro- 1d 146.3 148.6 137.7 150.9 154.7 127.5 141.1
6-Chloro['3C-2]- 1d* 146.3% 1486 137.7 150.9 154.7 127.5 141.1
6-Amino- (a) Te 139.8 146 .4 134.6 152.4 161.0 117.7 138.4
Pyrido[2,3-b ] pyrazin-2-one (a) 1f 154.5 155.3 1279 143.0 145.1 125.7 124.8
2-Chloro- 13 19* 148.3* 148.3 137.7 149.9 154.3 126.5 137.7
2-Chloro| " “C-2]- 1g 148.3 148.3 137.7 1499 154.3 126.5 137.7
2,6-Dichloro- 13 1h* 148.7* 148.9 136.7 149.2 154.7 128.4 140.0
2,6-Dichloro{” “C-2]- 1h 148.7 148.9 136.7 149.2 154.7 128.4 140.0
6-Chloropyrido[2,3-b | pyrazin-2-one (a) i 154.5 156.3 127.5 142.1 143.7 126.3 128.4
6-Chloro-3-phenyl- 1j 144.3 155.2 136.0 150.3 154.8 126.5 140.6
3-t-Butyl-6-chloro- 1k 144.8 168.7 135.1 149.9 154.3 126.3 140.6
2-t-Butyl-6-chloro- T 165.7 147.1 135.9 1494 153.4 126.9 140.9
Pyrido[2,3-b ] pyrazin-6-one (a) Tm 139.5 144.6 132.8 146.2 162.4 127.7 140.0
6-Chloro-2-hydrazino- (a) In 144.3 142.7 136.3 146.0 153.7 126.0 137.2
2,3-Diphenyl- 1o 154.7 156.3 136.2 149.9 154.1 125.2 138.0
2,3-Diphenyl-6-fluoro- 1p 154.3 156.9 135.3 148.4 163.2 114.7 143.5
2,3-Diphenyl-6-chloro- 1q 154.8 156.9 135.2 149.2 154.3 126.9 140.4
2,3-Diphenyl-6-bromo- ir 155.0 157.0 135.5 149.7 145.5 130.4 139.9

Samples were measured for deuteriochloroform solutions. (a) Measured for DMSO-dg solution.

13¢ nmr spectrum of the * 3C-labelled compound.

*Increase found for the signal in the
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H-2 H-6 H-7 H-8 Solvent
3-Phenylpyrido- 1b 9.35 (s) 9.08 (q) 7.51(q) 8.37 (q) CDCly
[2,3-b]pyrazine
2-Amino-1,2-di- 4 5.52(s) 8.05 (q) 6.62 (q) 6.94 (q) NH3/KNH
hydro-3-phenyl- :
pyrido[ 2,3-b]-py-
razinide ion
Table I1
C-2 C-3 C-9 C-10 C6 C-7 C-8

3-Amino-3,4-dihydro-

Pyrido[2,3-b | pyrazinide ion 2 148.4 64.3 125.6 159.7 149.8 102.7 132.5
3-Amino-2-t-butyl-6-chloro-

Pyrido| 2,3-b | pyrazinide ion 3 164.2 61.7 124.9 159.5 146.2 99.9 133.2
2,3-Dihydroxy-1,2,3,4-tetra-

hydropyrido[2,3-b] pyrazine

cation 5 73.3 74.5 (a) (a) 125.4 115.9 124.2
2.3-Diaminopyridine cation 6 132.7 146.6 125.5 115.0 125.5

(C-5 C-2 C-5 C-4

(a) Signals did not exceed signal-to-noise level. J (&) (€3 .
butylpyrido|2,3-6 Ipyrazine (1¢) in the liquid ammonia H 8 ‘
potassium amide system, the spectrum of this solution was HO 2~ N~ N7 HNG 25
nearly the same as that of e, dissolved in deuterio :
chloroform. The conclusion is justified that 1¢ does not HO 3\ N0 (3/ ¢ HoN 2\(,? s
undergo addition of an amide ion, neither at C-2, nor at H H H
(6. In contrast, 3-phenylpyrido| 2,3-b |pyrazine (1b) was @ &®

found by pmr spectroscopy to be completely converted
into the 2-amino-1,2-dihydro-3-phenylpyrido|2,3-b [pyr-
azinide ion 4, when dissolved in liquid ammonia, contain-
ing two equivalents of potassium amide. This is established
by the large upfield shift for H-2 and the smaller uplield
shifts for H-6, H-7 and H-8.
constants for H-6, 11-7 and H-8 are found to be unchanged.

Moreover, the coupling

This is the first spectroscopic evidence that addition at
(-2 of the pyrido[2,3-b]pyrazine ring system can take
place. It further indicates that the previous suggestion
that the ring contraction of 1k into 2¢-butyl-1-H-imi-
dazo[4,5-b |pyridine takes place by an initial addition at
(-2, seems reasonable.

Attempts to establish the '3C nmr spectrum of 4 were
unsuceessful, due to decomposition of the concentrated
solution in the time required for the measurement.

Covalent Hydration.

It is proved by pmr spectroscopy that 1a is not hy-

drated in a neutral aqueous solution (10) and that in
dilute aqueous acid 1a exists lo a small extent as the
cationic 2:1 o-adduct ie., 23-dihydroxy-1,2,3,4-tetra-
hydropyrido|2,3-b Jpyrazine (57).

We measured ' > C nmr spectra of 5 and found that they
resemble to a great extent those reported for the pteridine
analogue i.e., 6,7-dihydroxy-5,6,7 8-tetrahydropteridine
cation. Moreover, the low ficld region of the U3¢ nmr
spectra of 5% and the cation of 2,3-diaminopyridine (G(D)
are strikingly similar. In order to obtain L3¢ nmr data
of the neutral peaks of 5, we carefully nuetralized the
acidic aqueous solution containing 5~ with ammonia.
However the ' 2C nmr spectrum of the resulting solution,
measured without delay, only showed signals due to 1a,
indicating that dehydration of 5 into 1ais completed in
the time required for the acquisition of the last frec
induction decay.
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EXPERIMENTAL

The o-adduct measurements were performed as described
before (9). All compounds, except 2-chloropyrido] 2,3-b | pyrazine
(1g) were synthesized to reported procedures (11).
2-Chloropyrido[2,3-b] pyrazine (1g).

Pyrido|2,3-b | pyrazin-2-one (12) (1f) was treated with phos-
phoryl chloride by the usual procedure (11). Compound 1i was
recrystallized from hexane, m.p. 115-116°.

Anal. Caled. for C7HaCIN3: C, 50.77; H, 2.44; Found C,
50.96; H, 2.26.
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